Evaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources

نویسندگان

  • Allison Bradley
  • Jun Yao
  • Jules Dewald
  • Claus-Peter Richter
  • Francesco Di Russo
چکیده

BACKGROUND Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. METHODS EEG data were generated by simulating multiple cortical sources (2-4) with the same strength or two sources with relative strength ratios of 1:1 to 4:1, and adding noise. These data were used to reconstruct the cortical sources using current source density (CSD) algorithms: sLORETA, MNLS, and LORETA using a p-norm with p equal to 1, 1.5 and 2. Precision (percentage of the reconstructed activity corresponding to simulated activity) and Recall (percentage of the simulated sources reconstructed) of each of the CSD algorithms were calculated. RESULTS While sLORETA has the best performance when only one source is present, when two or more sources are present LORETA with p equal to 1.5 performs better. When the relative strength of one of the sources is decreased, all algorithms have more difficulty reconstructing that source. However, LORETA 1.5 continues to outperform other algorithms. If only the strongest source is of interest sLORETA is recommended, while LORETA with p equal to 1.5 is recommended if two or more of the cortical sources are of interest. These results provide guidance for choosing a CSD algorithm to locate multiple cortical sources of EEG and for interpreting the results of these algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid MEG source characterization by cortical remapping and imaging of parametric source models

Reliable estimation of the local spatial extent of neural activity is a key to the quantitative analysis of MEG sources across subjects and conditions. In association with an understanding of the temporal dynamics among multiple areas, this would represent a major advance in electrophysiological source imaging. Parametric current dipole approaches to MEG (and EEG) source localization can rapidl...

متن کامل

Source Localization accuracy in an animal model

Source localization in the human brain based on EEG and MEG data becomes more and more important in the field of clinical research and routine. Thus, information about source localization accuracy is indispensable. Source localization accuracy has been tested with various artificial source and volume conductor models. However, there are a number of limitations inherent to these artificial model...

متن کامل

Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals

Localization of sources in patients with focal seizure has recently attracted many attentions. In the severe cases of focal seizure, there is a possibility of doing neurosurgery operation to remove the defected tissue. The prosperity of this heavy operation completely depends on the accuracy of source localization. To increase this accuracy, this paper presents a new weighted beamforming method...

متن کامل

A New Weighted Correlation Coefficient Method to Evaluate Reconstructed Brain Electrical Sources

Various inverse algorithms have been proposed to estimate brain electrical activities with magnetoencephalography MEG and electroencephalography EEG . To validate and compare the performances of inverse algorithms, many researchers have used artificially constructed EEG and MEG datasets. When the artificial sources are reconstructed on the cortical surface, accuracy of the source estimates has ...

متن کامل

Cortical source localization of infant cognition.

Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016